目录

文/温国兵

一 引子

在生产环境中,删除一个大文件,比如一个数十 G 或者上百 G 的文件是很耗时的。

本文介绍一个快速 DROP TABLE 的方法。使用本文提供的方法,不管该表数据量、占用空间有多大,都可以快速的删除。

二 演示

下面做一个演示。

2.1 环境

首先说明环境:

环境

mysql> SHOW VARIABLES LIKE '%version%';
+-------------------------+------------------------------+
| Variable_name           | Value                        |
+-------------------------+------------------------------+
| protocol_version        | 10                           |
| version                 | 5.1.73                       |
| version_comment         | MySQL Community Server (GPL) |
| version_compile_machine | i386                         |
| version_compile_os      | apple-darwin10.3.0           |
+-------------------------+------------------------------+
5 rows in set (0.00 sec)

2.2 添加 innodb_file_per_table 参数

由于我使用 mysql_multi 的形式启动 MySQL。所以我们需要在 MySQL 的配置文件 my.cnf 中加入 innodb_file_per_table 参数。

我的 my.cnf 配置如下:

[mysqld_multi]
mysqld = /usr/local/mysql/mysql-5.1.73-osx10.6-x86_64/bin/mysqld_safe
mysqladmin = /usr/local/mysql/mysql-5.1.73-osx10.6-x86_64/bin/mysqladmin
log = /var/log/mysqld_mutil.err
user = root

[mysqld5173]
port=5173
socket=/tmp/mysql_5173.sock
basedir=/usr/local/mysql/mysql-5.1.73-osx10.6-x86_64
datadir=/usr/local/mysql/data/5.1
user=_mysql
log-error=/var/log/mysqld_5173.log
pid-file=/tmp/mysqld_5173.pid
innodb_file_per_table

[mysqld5540]
port=5540
socket=/tmp/mysql_5540.sock
basedir=/usr/local/mysql/mysql-5.5.40-osx10.6-x86_64
datadir=/usr/local/mysql/data/5.5
user=_mysql
log-error=/var/log/mysqld_5540.log
pid-file=/tmp/mysqld_5540.pid
innodb_file_per_table

[mysqld5612]
port=5612
socket=/tmp/mysql_5612.sock
basedir=/usr/local/mysql/mysql-5.6.21-osx10.8-x86_64
datadir=/usr/local/mysql/data/5.6
user=_mysql
log-error=/var/log/mysqld_5612.log
pid-file=/tmp/mysqld_5612.pid
innodb_file_per_table

2.3 导入数据

接着登录到 MySQL。

mysql --socket=/tmp/mysql_5173.sock -uroot -proot

创建测试表。

mysql> SET storage_engine=INNODB;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW DATABASES;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| test               |
+--------------------+
3 rows in set (0.01 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE user
       -> (name VARCHAR(20),
       -> age int,
       -> sex CHAR(2),
       -> city VARCHAR(20),
       -> work VARCHAR(10)
       -> ) DEFAULT CHARSET utf8 ENGINE = INNODB;
Query OK, 0 rows affected (0.17 sec)

mysql> CREATE TABLE city
       -> (name VARCHAR(20),
       -> province VARCHAR(20),
       -> shortname VARCHAR(4),
       -> coma VARCHAR(10),
       -> comb VARCHAR(10)
       -> ) DEFAULT CHARSET utf8 ENGINE = INNODB;
Query OK, 0 rows affected (0.08 sec)

说明:实验主要使用 city 表。user 表只是用于测试 LOAD DATA INFILE 的速度。

创建数据文本。

vim /tmp/user.txt
cat -n /tmp/user.txt

该文件包括 100W 行数据。内容如下:

1 “robin”,19,”M”,”GuangZhou”,”DBA”
……
1000000 “robin”,19,”M”,”GuangZhou”,”DBA”

vim /tmp/city.txt
cat -n /tmp/city.txt

该文件包括 1000W 行数据。内容如下:

1 “GuangZhou”,”GuangDong”,”GZ”,”Wechat”,”Netease”
……
10000000 “GuangZhou”,”GuangDong”,”GZ”,”Wechat”,”Netease”

编辑导入数据脚本。

vim /tmp/load_to_user.sql
cat -n /tmp/load_to_user.sql

该文件包括 10 行相同的导入数据命令。成功导入到 user 表后,会有 1000W 的数据。内容如下:

1 LOAD DATA INFILE ‘/tmp/user.txt’ \
INTO TABLE user \
FIELDS TERMINATED BY ‘,’ \
LINES TERMINATED BY ‘\n’;
……
10 LOAD DATA INFILE ‘/tmp/user.txt’ \
INTO TABLE user \
FIELDS TERMINATED BY ‘,’ \
LINES TERMINATED BY ‘\n’;

导入到 city 表的操作类似。

vim /tmp/load_to_city.sql
cat -n /tmp/load_to_city.sql

该文件包括 20 行相同的导入数据命令。成功导入到 city 表后,会有两亿条数据。内容如下:

1 LOAD DATA INFILE ‘/tmp/city.txt’ \
INTO TABLE city FIELDS \
TERMINATED BY ‘,’ \
LINES TERMINATED BY ‘\n’;
……
20 LOAD DATA INFILE ‘/tmp/city.txt’ \
INTO TABLE city FIELDS \
TERMINATED BY ‘,’ \
LINES TERMINATED BY ‘\n’;

导入数据到 MySQL。

mysql> source /tmp/load_to_user.sql

其中导入到 user 表共耗时 84.63 秒。

mysql> SHOW TABLE STATUS LIKE 'user' \G;
*************************** 1. row ***************************
           Name: user
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 10000389
 Avg_row_length: 63
    Data_length: 632291328
Max_data_length: 0
   Index_length: 0
      Data_free: 179306496
 Auto_increment: NULL
    Create_time: 2015-01-15 14:38:05
    Update_time: NULL
     Check_time: NULL
      Collation: utf8_general_ci
       Checksum: NULL
 Create_options: 
        Comment: 
1 row in set (0.22 sec)

mysql> SELECT count(*) FROM user;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (7.06 sec)

接着导入数据到 city 表。

mysql> source /tmp/load_to_city.sql
Query OK, 10000000 rows affected (1 min 45.95 sec)
Records: 10000000  Deleted: 0  Skipped: 0  Warnings: 0
......

总共耗时:

bc <<< 105.95+113.84+114.89+111.83+\
116.20+128.12+131.41+118.94+115.5+\
122.63+116.12+119.87+140.83+148.78+\
126.61+129.62+116.2+103.37+108.52+105.07

共计 2394.30 秒,亦即 39.905 分钟。

2.4 第一次删除表

我们查看数据目录,可以看到该表占用空间为 15G。

sudo ls -FGlAhp test

total 15699980
-rw-rw—- 1 _mysql _mysql 8.5K Jan 15 16:46 city.frm
-rw-rw—- 1 _mysql _mysql 15G Jan 15 17:33 city.ibd

删除表,耗时 1.08 秒。当然,这里数据量还不够大,所以速度还是挺快。

mysql> DROP TABLE city;
Query OK, 0 rows affected (1.08 sec)

接下来,我们重新创建表,导入数据。

mysql> CREATE TABLE city
       -> (name VARCHAR(20),
       -> province VARCHAR(20),
       -> shortname VARCHAR(4),
       -> coma VARCHAR(10),
       -> comb VARCHAR(10)
       -> ) DEFAULT CHARSET utf8 ENGINE = INNODB;
Query OK, 0 rows affected (0.06 sec)

mysql> source /tmp/load_to_city.sql

导入数据耗时跟之前相差不多,不做计算。

2.5 第二次删除表,使用硬链接

创建硬链接。

sudo ls -FGlAhp test

total 15699980
-rw-rw—- 1 _mysql _mysql 8.5K Jan 15 17:35 city.frm
-rw-rw—- 1 _mysql _mysql 15G Jan 15 18:13 city.ibd

sudo ln test/city.ibd test/city.ibd.hl
sudo ls -FGlAhp test

total 31399948
-rw-rw—- 1 _mysql _mysql 8.5K Jan 15 17:35 city.frm
-rw-rw—- 2 _mysql _mysql 15G Jan 15 18:13 city.ibd
-rw-rw—- 2 _mysql _mysql 15G Jan 15 18:13 city.ibd.hl

可以看到,iNode 由 1 变为 2。

再次删除。

mysql> SHOW TABLE STATUS LIKE 'city' \G;
*************************** 1. row ***************************
           Name: city
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 200000304
 Avg_row_length: 79
    Data_length: 15847129088
Max_data_length: 0
   Index_length: 0
      Data_free: 4194304
 Auto_increment: NULL
    Create_time: 2015-01-15 17:35:14
    Update_time: NULL
     Check_time: NULL
      Collation: utf8_general_ci
       Checksum: NULL
 Create_options: 
        Comment: 
1 row in set (0.38 sec)

mysql> SELECT count(*) FROM city;
+-----------+
| count(*)  |
+-----------+
| 200000000 |
+-----------+
1 row in set (3 min 11.39 sec)

mysql> DROP TABLE city;
Query OK, 0 rows affected (0.90 sec)

最后,把硬链接文件删除。

sudo ls -FGlAhp test

total 15699968
-rw-rw—- 1 _mysql _mysql 15G Jan 15 18:13 city.ibd.hl

sudo rm -rf test/city.ibd.hl

三 实验结果

第一次删除,耗时 1.08 秒。第二次,建立硬链接后,删除表耗时 0.90 秒。两次删除表耗时差异不是太明显,那是因为我的数据只有 15 G。如果在生产环境中,数据量达到数十 G、上百 G、甚至 T 级,就会显示这种方法的威力了。本来打算模拟出 100 G 的数据,但由于机器配置和时间关系,就没有做了。

PS:两次插入数据,每次 两亿,已经耗去我 1 个多小时的时间。时间宝贵啊,不在这里浪费了。

四 原理分析

本文中快速 DROP TABLE 利用了操作系统的 Hard Link(硬链接) 的原理。当多个文件名同时指向同一个 iNode 时,这个 iNode 的引用数 N > 1,删除其中任何一个文件名都会很快。因为其直接的物理文件块没有被删除,只是删除了一个指针而已;当 iNode 的引用数 N = 1 时,删除文件需要去把这个文件相关的所有数据块清除,所以会比较耗时。

最后,吐槽下 Windows。这次测试环境为 Mac OS X 10.9.5,i5,8G 内存。vim 打开一个 458 M 的文本,只需要数秒(N <= 5)。 插入数据时内存几乎用完,使用率达到 98%,但 Mac 相当给力,没有丝毫卡顿。如果这个实验是在 同样配置的 Windows 下做,不知要折腾到什么时候,或许,根本跑不动。

截个图给读者欣赏欣赏。

2015-01-15-solution-of-droping-large-table-under-mysql

Enjoy!

五 Ref

–EOF–

版权声明:自由转载-非商用-非衍生-保持署名(创意共享4.0许可证)